leetcode-1277. 统计全为 1 的正方形子矩阵

原始思路

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
class Solution {
public int countSquares(int[][] matrix) {
int n1 = matrix.length;
int n2 = matrix[0].length;

int[][] dp = new int[n1][n2];

// 初始化dp
dp[0][0] = matrix[0][0];
for (int i = 1; i < n1; i++) {
dp[i][0] = dp[i-1][0] + matrix[i][0];
}
for (int i = 1; i < n2; i++) {
dp[0][i] = dp[0][i-1] + matrix[0][i];
}

for (int i = 1; i < n1; i++) {
for (int j = 1; j < n2; j++) {
if (matrix[i][j] == 0) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i-1][j-1];
}else {
// 加入i,j 这个节点后能构成多少个矩形
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i-1][j-1] + judge(matrix, i, j);
}

}
}

return dp[n1 - 1][n2 - 1];
}

public int judge(int[][] matrix, int x, int y) {
int count = 0;
//最多能构成的矩形的长度
int len = Math.min(x, y);
for (int i = 0; i <= len; i++) {
// 判断x-1, y-i 到y
boolean b = true;
for (int j = y-i; j <= y; j++) {
if (matrix[x - i][j] == 0) {
b = false;
break;
}
}

if (!b) {
return count;
}

for (int j = x - i; j <= x; j++) {
if (matrix[j][y-i] == 0) {
b = false;
break;
}
}

if (!b) {
return count;
}

if (b) {
count ++;
}
}
return count;
}
}